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EQUILIBRIUM OF A HIGH CURRENT ELECTRON RING IN A
MODIFIED BETATRON ACCELERATOR

I. Introduction
Over the last few years, sevel:‘al.labor.'at:oriesl'7 have been engaged in studies
that are aimed to assess the feasibility of developing ultra high current
accelerators. These studies are mainly motivated by the potential application of
high energy, high current electron beams in nuclear physics research, medical
radiography and the fusion program.

In general; the effort is not directed toward developing novel accelerating
schemes but rather in modifying 5r iwproving the existing accelerator technology.
Among the various proposed modifications, the addition of a strong toroidal magnetic
field to a conventional betatron®s? has attracted considerable attention®”’ and the
configuration has been named the modified betatron.

In this paper we analyze and discuss the dynamics of a high current electron
ring confined in a modified betatron configuration. When the intense electron ring
ls surrounded by a finite conductivity wall, its dynamics can be divided, rather
naturally, into three distinct phases: The pre—acceleration phase follows the
injection and trapping of the electron beam. The duration of this phase is short,
typically a few usec and the conducting wall surrounding the ring can be treated as
perfect conductor. The pre-acceleration phase is followed by the diffusion phase,
which lasts for a time that is of the order of the magnetic field diffusion time.
During the diffusion phase the self magnetic field of the beam diffuses out of the
metal torus. As a result the electron energy is reduced and the hoop stresses
increase, but at different rates. Therefore, the equilibrium will be lost if means
are not provided to balance these two effects. The last phase, i.e., the main
acceleration, starts after the self magnetic field diffuses out of the torus and has

a duration that is comparable with the acceleration time. For most of the third
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phase the energy of the ring has increased substantially and thus the effect of the

self fields is appreciably diminished.
The present work addresses the dynamics of high current ring in a modified
betatron configuration. It includes both analytical and computational studies for

"cold" as well as "hot" electron rings. The main conclusions are: First, if the

energy of the injected electrons is not exactly equal to the energy corresponding to ,

the equilibrium orbit, which is assumed to coincide with the minor axis of the
torus, the center of the orbit is displaced from the center of the minor cross-
section of the torus. The displacement is proportional to the energy mismatch,
This imposes very stringent constraints on the injector. Second, during the
-diffusion of the self magnetic field of the ring out of the chamber, the equilibrium
can be lost if means are not provided to balance the change of the ring equilibrium
radius that are due to the reduction of the relativistic factor Yo and the increase
of hoop stresses. Third, the modification in the flux rule for high current rings
can be ignored, provided that v/Yo3 (v = Budker parameter) is very small. Fourth,
with the exception of the expansion of the minor cross-section of the ring, finite
emittance does not have any other noticable effect on the equilibrium, and fifth,
considerably higher axial energy spread can be tolerated in high than in low current
rings.

The general and most important conclusion of these studies is that equilibrium
states of high current rings in a modified betatron configuration exist over a wide
range of parameters. These equilibria are realistic and accessible with existing

technology.
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] II. Orbit Stability of a Cold Ring Without Surrounding Walls and Toroidal

Corrections !

The stability of a single particle orbit, when thermal effects, wall effects

and toroidal corrections are neglected, has been considered pteviously.“ Using the

coordinate system shown in Fig. I and assuming that the external field components

vary as
Bz(r,t) - Boz(c) 1 =na( - to)/ro}, (1a)
i Ny
B.(r,t) = - B_(t) nz/r , {(1b)
1 r aBz ;
Eg (r,t) = vy g r'dr T (r’, t), (1¢c) ;
;
and
By(r) - B,g {1-¢( - ro)/ro}, (1d)

T ey

it has been determined that for Be >» Bz and v/yo < < 1 the orbits are stable,

provided that the following condition is satisfied :
n_ { (B /2B )2 ()
s = oe/ oz’ ° :

In the above equations Bz(r,t) is the axial and Br(r,t) is the radial component of

i
b

the betatron field, Be(r) is the toroidal magnetic field, Ee(t,t) is the induced
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Figure 1. Schematic of the modified betatron configuration and system of

coordinates ugsed in the analysis.




electric field, n {is the external field index, T sZ, are the coordinates of the
center of the electron ring and ng is the self-field index. The self-field index is

defined as
2 2 2
ngo= oW /(ZYOQOz ) = 2(v/Y°) (c/Qozrb) , (3)

where wbz{- bweznolm} is the beam plasma frequency squared, Yo is the relativistic
factor, Qoz {-eBoz/mc} is the cyclotron frequency corresponding to the axial

component of the betatron field, r, is the minor radius of the beam and v is

b

Budker’s parameter, i.e., the product of the number of electrons per unit length
times the electron classical radius,
The electron beam current that can be stably confined in a modified betatron

can be obtained by substituting Eq. (3) into Eq. (2) ani is

3 2

3
I, < 2.1 (rb/r°)2 v, 8, (B g/B,,) {ka}. (4)

where Bo = v°/c. When v, >> 1, then toQoz/Yo = ¢ and Eq. (4) becomes

1, <7.22x 107 r?

2
b b YbBoe {KA}, with Ty in cm and Boe in Gauss.

In addition, it has been shown under the same conditions but with B_ = 0

8
(conventional betatron), the beam is stable provided
n < 1/2, conventional betatron. (5)
(By = 0)
5




The electron beam current that can be stably confined in a conventional

betatron can be obtained by substituting Eq. (3) into Eq. (5) and is

2_3,3
Iy 4.2 (rp/e )%y "8 7 {Ral. (6)

or

-7 _2 2
I, < 16.66 x10 " r “v B {ral,

when v >> 1. The ratio of I, to I, obtained from Eqgs. (4) and (6) is

b

1

nb 2
T 1/2 (BOG/BOZ) .
cb

The above relation indicates that for Bo > Boz’ the electron beam curreat that can

G}
be stably confined in a modified betatron substantially exceeds the current that can
be confined in a conventional betatron.

The modified betatron stability condition given in Eq. (2) can be easily

obtained from the well known confined equilibrium conditionlo

2(m52/9c2) <1, (non-relativistic) &

where wy is the beam plasma frequency and Qc is the cvclotron frequency. For

relativistic energies and taking into account the self magnetic field of the beam

2
wy becomes
wsz
2 1
w + ) =3, (8)
o Y?
self field correction

6




2 2
Qc +> Qe /Yo . (9)

2

Substituting Eqs. (8) and (9) into Eq. (7) we obtain the stability condition of Eq.
(2). The equality sign in Eq. (2) gives the maximum electron density that ca- be
supported at a specific value of Boe/Boz and the corresponding equilibrium i nown

as Brillouin flow.l0
III. Wall Effects on the Macroscopic Motion of a Cold Beam

In this section we analyze the effects of surrounding walls on the motion of
the center of the beam. In the first sub-section, it is assumed that the perfect
conductor that surrounds the beam is a straight cylindrical pipe of circular cross-
section and thus toroidal effects (hoop stresses) are omitted. These effects are

included in the second sub-section.

a., Without toroidal corrections

Consider a pencil-like electron beam inside a straight, perfectly conducting
cylindrical pipe of circular cross-section as shown in Fig. 2. The center of the
beam is located at a distance Ar, A& from the center of the minor cross-section of
the pipe. As a result of the induced charges on the wall, the center of the beam
will experience a radial, outward directed force, which for small displacements,

i.e.,Ar, 8z <K a is given by

Fp = 2re n (r,/a) {Arer + Azez}, (10)

7
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p2 =Ar®+4a2°

Perfect Conductor
Figure 2. Wall (images) forces acting on a pencil-like electron beam,

situated inside a perfectlv conducting cylindrical pipe.




where a is the cylinder radius and n, the uniform beam density.
Similarly, as a result of the induced current on the wall, the center of the
beam will experience a radial force that is directed toward the opposite direction

than FE and is given by

B o Fg° (11

Using the external fields of Eq. (1) and the induced fields of Eqs. (10) and (11),
the equations describing the temporal linear evolution of the beam’s center, for

time independent applied fields, are:

.y SO R
or + w ° A& = —— Az + (—) (12)
r Y Y Y mr
) )
and
. Q
bz + 92 az = - 284, (13)
z Y
o
2 2
~ 2 2 ‘b ~ 2 2 b
where w “ = (2 /v )"(l - n - n_ ;5—), w = (a /y)(n - n _;E)’
8y, B <¥®g
Q .= eB e/mc, Q = eB_/me, - and 8P, is the difference between the
of o oz oz Y, Yomroc ]

canonical angular momentum of an electron at (r,z) and its corresponding value at
the equilibrium orbit (ro,o). The average is over initial coordinates and

velocities. Equations (12) and (13) do not include the self electric and self

magnetic fields, because both these fields are zero at the center of a straight

e




] 1Y)

beam. In addition, the non-linear terms<$£-;92 &z and A o8 Ar have been omitted
o o o o

from Eqs. (12) and (13). These two terms have their origin in the gradient of the
toroidal magnetic field and are considered in Section V. In general these terms are
not significant except in the limit ;% + o.

In Eq. (12), 670 = B°<6Pe>/mr°c indicates the energy mismatch, i.e., the
difference between the energy of the reference electron (moving along the axis of
the beam) and the energy required for the same electron to move on the equilibrium

orbit (r,,0). The solution of Eqs. (12) and (13), for time independent fields, is

Q <GPe>
0z ~ 2 2,1/2

Ar = _2_~_2—+ jil c.1 (wz - wj ) eimjt, {(14)
Yo “e TP

and

2 ~ 2,1/2 =
= 1
Az j’?l cj (wj wr) ei jt’ (15)
where cj is a constant and
w2-1/2{32+52+(9/)2+[('&2+$2+
j r z 08 Yo - r z
(16)
2

~ 2 ~2
(Qoe/Yo)z) - 4wr w, ]1/2}.

The first term on the RHS of Eq. (14) gives the displacement of the center of

the orbit from the center of the surrounding cylindrical pipe and can be written as

<‘5Pe>”o

Ar = 2 2 (17)
(QOZ/YO) (1 = n - nry /a )mr°

o

e G SN
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(minus sign). When B

Equation (16) has four roots. Two of them are fast (plus sign) and two are slow

» Bz, the slow mode becomes

9
~a~ 2 2 2 2 2
W w B Q r T
2 2 r z 0z 0z b b
w s = w0t = ) = (=) (=) 0-n-n —) (n-n —), (18)
i B Qoe Yo Boe *6 s a2 8 a2

and the fast mode is = (Qoe/yo). Equation (18) is plotted in Fig. 3 for two values

2
nr
of external field index. For n > 1/2, mBZ is negative when l ~ n < szb < n and

a

2
2 "s b
for n < 1/2, g is negative when n < 5 <1 - n. Negative values
a

of wBZ indicate that the beam motion is unstable and the orbit in the r,z plane is

open., Since the parameter nsrbzla2 scales as 70-3, during

acceleration nsrbzla2 decreases rapidly. Therefore, in order to avoid the
instability, it is necessary that before the commencement of the acceleration the
parameter nsrbzla2 is less than 1 - n when n > 1/2 and less than n when n < 1/2,
This implies that the injected beam current should be limited to
1<8.5( -n) 8y a’/r 2 {ka} for a > 1/2
- oo o
and

I1<8.5 nB°Y°3a2/r°2 {ka} for n < 1/2.

It is apparent that these two constraints are rather lenient.

11
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Figure 3, Bounce frequency-squaredas a function of nsrbzlaz, with the field
index n as a parameter. The orbits are open when wBZ <0 and

closed when wBZ > 0.
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The orbit of the ring’s center is described by

Ar(t) = [Ar(o) - Arol cos wpt + Ar(o) sin wpt + or , |

Az(0)

Az(t) = Ar(o) cos (u%t) + sin (wBt),

= where the initial velocities and displacements are related by

aio) = - [5.%/(a o7 )] az(o),

. .2 noz <6Pe>
22(0) = [@°/(a o/v)] aro) + (322) ——,
08 ‘o o

and

<6Pe> = meto(ve- r, QOZ/YO).

The predictions of Eq. (18) are in good agreement with the results of computer

simulation shown in Fig. 4. This figure shows four snap-shots of the beam in the ﬁ

r,z plane., At t = 0 the circular electron beam is injected near the center of the
pipe. The values of the various parameters are listed in Table I. The electron

beam current is kept low (1 KA) in order to minimize the toroidal effects. As can
be seen from Fig. 4, the center of the electron beam describes a circle in the r,z

plane with a period of about 188 nsec. For the same parameters Eq. (18) predicts a

period Ty = 21r/mB < 180 nsec. These numerical results .re discussed further in the
, next sub-section.
The displacement of the orbit’s center because of the energy mismatch [Eq.

(17)], imposes very stringent constraints on the injector. This becomes apparent

when we consider some limiting cases. For example, when n = % and n r2

sTh << 1, Eq.

(17) is reduced to

13




Z (cm)

-6.4

Figure 4.

43.6 56.4
R (cm)

Snap-shots of the electron ring minor cross-section at four
different times. The values of the various parameters are listed
in Table I. The center of the ring’s minor cross-section
describes a circle.
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Table I.

Parameters

Beam Energy (MeV)
Beam Current (kA)
Beam Minor Radius (cm)
Beam Major Radius (cm)

Torus minor radius (cm)

Vertical magnetic field (G)

Toroidal magnetic field (kG)

External field index

Self field index

15

50

6.4

240

0.47

0.88




fﬂ =2(8v /v). (19)

T, o' o
Equation (19) predicts that for a major radius r, = 100 cm, the ratio 616/70 should
be less than 1% in order the displacement of the orbit to be less than 2 e¢m. The
condition GYO/YO < 1% requires that the uncertainty in energy should be less than 35
KeV, when the energy of the injected beam is 3 MeV. Although such a small energy
uncertainty can be attained with sophisticated injectors, there are other factors,
such as space charge and inductive effects, which contribute substantially to the
uncertainty of energy. Although the displacement cannot be eliminated, its negative
impact can be alleviated by elongating the minor cross—section of the torus along
the r-direction.

b. Torcidal Correctionss’11

The cause of these effects is the finite curvature of the electron beam

orbit. For relative large aspect ratio rO/r >> 1 beans, the toroidal effects

b
become important when v/Y° exceeds a few percent. Previous work!?2 on toroidal
effects was limited to "bare" rings, i.e., without surrounding conducting walls. 1In
this sub-section we briefly analyze the toroidal corrections for the more realistic
geometry shown in Fig. 5, i.e., including the effect of conducting wall around the
beam. Since different physics issues are involved in the case of a "bare" and
"shielded" rings, it is appropriate to start our discussion with a bare ring.
Consider on intense electron ring as shown in Fig. 5, but without the toroidal
chamber. At the inner edge of the RHS cross-section of the ring the self-magnetic
field is greater than that of a straight beam with the same parameters, because of

the contribution from the LHS of the ring. At the outer edge of the cross-section,

the self magnetic field is reduced because the contribution from the LHS of the ring

16
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Chamber
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Ring
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Electron
Ring

Figure 5. An electron ring inside a conducting toroidal chamber. Because of
the toroidal effects, neither the self-electric not the self
magnetic field is zero at the geometric center of the ring.
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has opposite polarity than the local field. Thus, the total self magnetic field is
shifted upwards, as shown schematically in Fig. 5. 1In contrast, the self electric
field decreases at the inner radius and its magnitude increases at the outer radius

of the ring. Thus the self-electric field shifts downwards. As a result of these \
shifts neither the magnetic nor the electric field are zero at the geometric center

of the ring.

When the electron ring is surrounded by a perfect conductor, the shift in the
fields discussed above is reduced but additional field components appear as a result
of induced charge and current on the conducting wall, For small ring displacements
from the center of the minor cross section of the torus, the induced fields vary
linearly with the displacement and are identical to those given in Eqs. (10) and

(11), for a cylindrical pipe. Quantitative extension of the previous qualitative

considerations has shown that the fields at the center of an uniform density

electron ring inside a perfectly conducting toroidal chamber of circular cross-

section ares’ll

2 2 2
r r r
b Ar 1 b b Az °
Ejpa = 2rlelagr (g Tty g m ) et he . (20)
a o ro b a 0
and
r 2 e, 2 T 2 r
b Az ° b Ar b 1 a -
Bing = “2%lelaggry e - (e - Loz meh el 2D |
a o a o ro b .

where n, is the ambient density, Bo = vo/c, Yo is the azimuthal velocity defined by

ronoz/Yo

o T 1+ 2(v/y°)(1 + n a/rb) '

v (22)

18
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and the displacement Ar,AX of the ring from the center of the torus has been
assumed to be much less than a. In addition, the fields given by Eqs. (20) and (21)
have been derived under the assumption that the angular frequency of the electrons
is constant and therefore the electron current density varies proportionally to r.
Using Eqs. (20)-(22), it can be shown that the center of the beam is described

by Eqs. (12) and (13) with Z&z and 522 replaced by

2
~ 2 0 * 2,2
W * ; (a=-n =~ n.ry /a%), 23)
Y
o
2 'Qozz * 2,2
L (n - n o /a®), (24)
Yo
and
SPg + £0Py
where
as (1 - % md &,
o b
=1+ U+ w2y} (25)
Y r
o b
and
*
n = n§.
The bounce frequency can be found by substftuting Eqs. (23) and (24) into Eq.
(18) and is

19
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B 2
2 _ (_0zy2 (_o0z)2 - _.8b - b
wy (Boe) (Yo )" (a-n 2 ) (n" - n, 2 ). (26)

*
When n = a/2, for the reasons stated in the paragraphs following Eq. (18), the

orbits are closed (stable) as Y, increases, provided

2,2
Ty /a® < /2

or, for Y, > 1

a 12 v a 3
I< 4.25 (rb) (1 Y n ‘b) Y, (kal. (27)

The limiting current given by Eq. (27) is considerably lower than that of Eq.
(4) when Boe > Boz' In addition, in contrast to the current given by Eq. (4), the
current of Eq. (27) is independent of the toroidal magnetic field Boe.

At this point, it is appropriate to return and discuss further the computer
simulation results of Fig. 4. For the 1 KA, 3 MeV beam the v/Yo = 0.0084. Even at
this small value of v/yo toroidal effects are noticeable. The value of £ computed
from Eq. (25) using the above value of v/Yo and 6.4 for the ratio a/ry is 0.95.
According to Eqs. (23) and (24) the center of the beam will describe a circle

* *
when a-=n = n or forn = 1(1 - \VYB fn a/rb)E = 0.467, which is in excellent

2
agreement with the simulation. In addition Eq. (26) predicts a period of 188 nsec,
which also 1s in excellent agreement with the simulation.
The most striking manifestation of toroidal effects is in the value of betatron
magnetic field required to confine the rotating beam at a specific radius. When the

axis of the beam lies along the axis of the torus, i.e., when Ar = Az = 0, it can be

shown from Eqs. (20) and (21) that the external magnetic field required for the beam

20




to rotate with a radius ro is

oz = B, L+ 2vy Q1+ 1aa/rp},
where BO is the magnetic field necessary for a single particle of the same energy to
rotate with a radius L

The above expression for the magnetic field is based on the assumption that all
the electrons rotate with a constant angular frequency, i.e., the current density
increases linearly across the beam. If the current density is constant across the

beam, the above expression is slightly modified and becomes

B,, = B, {1+ 2v/Y, (0.5 + gn a/rb)}.

For a 10 KA, 2 MeV uniform current density beam with a ratio a/rb = 6.4, the
correction is 55%, i.e., Boz/Bo = 1.55. This effect is demonstrated clearly by the
results of computer simulation shown in Fig. 6. The three snap-shots of the
electron ring minor cross section in a modified betatron field correspond
tot »0, 20 and 40 nsec. For all practical purposes, the minor radius of the beam
remaing constant., The external betatron magnetic field is 127 G, i.e., ~ 50% higher
than the single particle field. The remaining parameters are summarized in Table
11.

Another consequence of the toroidal effects is the increase in the radial

displacement of the orbit for fixed energy mismatch and major radius. For

*
n = af2 andn r 2/a2 << 1, Eq. (19) becomes 4r /r = 2(8y /y) (1 + — n 2), 1In
s b o o o o Y, Ty
addicion, the mBZ vs., n rbZ/a2 curves of Fig. 3 are shifted to the left and thus the
s

21




«_TIME = 0.00 nsec TIME = 20.00 nsec « TIME = 40.00 nsec 1
© //////’”ﬁ “‘\\\\\\ ////,/"“\\\\\\ :
{ < \\\\\~\; 1:/’//// \\\\\\~_> 4‘,4’////
7~}
' 93.6 106.4 ! 936 106.4 106.4
R{cm) R(cm) R{cm) l

6.4

Z{cm)

6.4

Figure 6. Three snap-shots of the electron ring minor cross section in a
modified betatron field. The external magnetic field required to
confine the ring is 50% higher than the single particle field. #
The values of the various parameters in this run are listed in

Table II.

Table II.

Parameters of the uniform current density ring

Beam Energy (MeV) 2
Beam Current (kA) 10
Beam minor radius (cm) 1
Beam major radius (cm) 100
Torus minor radius (cm) 6.4
Vertical magnetic field (G) 127
Toroidal magnetic field (kG) 1.7
External field index 0.25
22




maximum permissible current that can be accelerated is reduced, as may be seen from

Eq. (27).
IV. Acceleration

After injection and trapping the beam is accelerated to high energy by the
inductive electric field generated by the time varying betatron magnetic field. As
shown in Fig. 7, the acceleration may be divided into three phases

l. Pre-acceleration
2. Diffusion

3. Main acceleration

The pre-—acceleration phase occurs for times much shorter than the field
r
diffusion time, i.e., t < tD .11 c Safn (;20, where o is the conductivity, & is

2
the thickness, a is the minor ragius and LN the major radius of the torus. During
the pre—-acceleration phase the self magnetic field of the beam does not have time to
diffuse out of the conducting torus. In the example shown in Fig. 7 the total
acceleration time was chosen 1 msec and the diffusion time 10 usec. The ratio of
the temporal extent of each phase .o the total acceleration time t/ta is also given
in the figure. 1t is apparent that the beam spends most of its time in the main
acceleration phase.

During the pre—acceleration phase the metal wall surrounding the beam can be
treated as a perfect conductor. As a result, for small displacement of the beam,
the self flux linking the axis of the electron ring remain constant to lowest
order. This point is discussed further later.

The condition for the major radius of the electron ring to remain constant can

be derived from the conservation of canonical angular momentum
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Acceleration Phases

acceleration time is 1 msec and the diffusion time 10 usec.

®Cc
w9 ] dB
o= -4 0z
£9 1 Tl 2.5 G/usec
Y-y =4
-§5 :9 By = Const.
g . |
g2 s
-w ‘
‘ Pre-Acceleration Diftusion Main Acceleration
o A e 4 -
te 10" 107’ 10" 107 0™ 10 sec
+/1,23X107%)  (.002) (.018) (.98) |
I I hi18 j
Figure 7. The three phases of acceleration. 1In the example shown the ﬁ
!
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S it

e ext s
Pg=myrv o= <Cr (Ag + Ag), (28)
where Vo8 is the toroidal velocity, AZXt is the vector potential that describes the

external magnetic (betatron) field, AJS is the vector pote. tial that describes the
seif magnetic field of the beam and r is the instantaneous radius of the beam.

The self flux linking the ax.s of the ring o° is
¢° = 2rra °, (29)

and to lowest order is independent of the beam displacement and thus of time See

Eq. (35) . Substituting Eq. (29) into Eq. (28) and using the expression for

r /vy
- 0z [o]
08 1+ 2 (v/Yo)(l + 2n a/tb)’

\4

Eq. (28) predicts that r remains constant, provided

3 Boz(c)

9 [ ext
at L1 + Zvlyb (1 + tn a/rb)

13 -
]"2"3?“ >. (30)

In equation (30), Boz(t) is local magnetic field, v is the Budker’'s parameter,

a is the minor radius of the torus, r. is the beam radius and <BeXt> is the average

b
applied magnetic field.

Using the equation

Y
2
me 3;3 = -eG.E, (31a)
25




together with

- 4 r 2 ext
- - L 92 (31b)
E 7e 3t <B7 7,
equation (30) becomes
3B__(t)
oz N 2V a 3 ext 32
=y 1+ 550+ ) =, (32)
Y b
)
13

A similar condition has been derived previously ~.
Equation (32) is the condition that must be satisfied in order for the radius
of the accelerated electron ring to remain constant. For low v/Yo beams, Eq. (32)

is reduced to the well known flux rule, i.e.,
aBoz(t) ext

3¢ >.

1 3
2 ot <B

The correction term ZXE (1 + ln-%—) in Eq. (32) is very sensitive to the beam
Y b

energy. For a 10 ka, 3 Me? beam injected into a 10 cm minor radius torus with

" 1 cm, the correction is ounly 1% and therefore can be neglected. However, when
the energy of the same beam is reduced to 0.5 MeV the correction is 48%, i.e., very
substantial. The design of the accelerator is simplified considerably bv choosing
the beam parameters such that the correction term is negligible.

The instantaneous value of Yo(t) may be determined from Eqs. (30) and (31) and

for Yoz(t) > 1 is

v, (t) 1+ 2v/v_(0)(1 + tn a/rb)] B, (t)

Yo(O) L+ 2v/y (t) (1 + 20 a/r)] Boz(o)'

In contrast to the low current beams, in which Yo(t)/Boz(t) remains approximatelv
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constant during acceleration, for high current beams with toroidal corrections the

quantity that remains constant during acceleration is

Yo(t)

B"‘—oz(t) {1+ 2V/Yo(t) (1 + ¢n a/rb)} = constant. (33)

As Yo(t) increases with time, the correction term decreases and Eq. (33) is
reduced v (t)/B_(t) = const.

! o] oz

‘ Now, we return to discuss the self flux linking the axis of the ring. In the

notation of the toroidal geometry shown in Fig. 8a, the magnetic stream function

Y= rAes for p < ty is given, to lowest order, by11
c 2
$/Q = 2 tn afr, + (1 ~ 02/r 2) -2 p/a L cos (v - 6) + 2= (2n & - 30
b b a R r 4 2
b b a
5 2
2 - Z-p%rb ) cosé, (34)

where Q = =¢e¢ nonrbz Qsz/c, Q= ve/r,AZ- Ar2 + Azz, n, is the uniform density and

it has been assumed that a << T Ty << a and Ar, Az << a.

The self-flux through the axis of ring is
0% = 21yp = 0). (35)
Substituting Eq. (34) into Eq. (35), we get
¢° = 27Q (1 + 2 ¢n alr,), (36)

which does not depend on the displacement Ar, 4z of the beam. This is a rather
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unusal result and deserves further discussion.

To gain some insight into the problem, we have computed the flux linking a
horizontal surface s extended from the axis of a straight beam to the inner wall of
a perfectly conducting cylinder of circular cross-section as shown in Fig. 8b. The
beam displacement is arbitrary but the ratio rb/a <€ 1. It is straight forward to
show that the flux through such a surface of length 2 is

8% = (221/¢) {tn (a/r,) - a(l - (37)

where I is the beam current.

2)1/2/a <1, Eq. (37) indicates that the flux 8° has a quadratic

For (Ar2 + Az
dependence on the beam displacement. Therefore, since only the linear terms on beam
displacement were kept in the derivation of Eq. (34), it is not surprising that the
flux given by Eq. (36) is independent of the displacement of the beam.

When the time approaches the magnetic field penetration time t the self

Dl
magnetic field of the electron beam starts to diffuse out of the finite conductivity
metal torus. Using the geometry shown in Fig. 9, it is shown in Appendix A, that

for a very thin conductor, i.e., a = b, to lowest order, the self magnetic field of

the beam at time t {is

-t/t
21 D
B¢(t,t) 'E'[l-e l, e> b
21
By (r,0) =T, Lrla,
where
_Avro&a o
tD 5 fn (—).
¢
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Figure 8a. System of coordinates for Eq. (34).
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Figure 8b, A displaced straizht electron beam inside a perfectly conducting
pipe. The imaa92 current is located at a distance
aZ/(Arz + Azz) from the center of the pipe.
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These equations are based on the assumption

r
that &8/a << 1, ((&/b)2n —%)1/2 << 1 and the inductive electric field varies
3B ,(b,t)
as Ez(t,t) - % ——23E~—— fn (%—), i.e., goes to zero at r = r, (pseudo-toroidal
)

geometry).

The self magnetic flux in the three regions is given by

Anro
—— Iin(a/rp) ra
8% =~ 0 a<r<h
Awro -t/tD T,
1{1-e ltn = r>b
c b -
and it diffuses out at the rate
s 4w 1 -t/t r
dd - o D _o
at T c e n (b ). (39)

The inductive electric field generated by the changing flux given in Eq. (39)
acts to slow down the beam. In addition, for a constant current density ring, the
hoop stresses increase by the ratio (2 + tn zéi)/(l + 2n %;), and the induced
magnetic field components go to zero at the end of the diffusion. However, the
electric field components remain the same. As a result, for a electron ring that is

situated along the minor axis of the torus, the decrease in its equilibrium radius

associated with the reduction of Y, is greater than the corresponding increase of
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the equilibrium radius associated with the enhanced hoop stresses and thus
equilibrium can be lost. This difficulty can be avoided by placing a set of
external conductors along the minor cross—-section of the torus having a poloidal
distribution that closely resembles the distribution of wall currents in a perfect
conductor, i.e.,

I

b
Iw * " Tra [l - E%; cos¢],

where I, is the wall current per unit length and I, the ring current.
This compensation is satisfactory even when the beam is displaced off center

, provided that w_t, >> 1. The

and rotates around the equilibrium position with w s T
14

B

reason is that the correction term in the fields at the center of the ring,” when

the skin depth is much greated than the thickness of the conductor, is

-t/T
-2 e D

sin w_t,
“'p

B

and therefore, it can be neglected. Similarly, when the skin depth is much smaller

than the thickness, the correction term is also small and is given by

-t/rD
’2(2 : a)/a + 2 Z 7 sintt.
BD BD

In addition, we have shown that the components of magnetic field that are

proportional to the displacement of the beam do not diffuse out of the chamber when

w. T, D> Yoz. As a consequence nsrb2/a2 does not increase during diffusion and Wy

BD
14

does not change polarity. Therefore, the drug instability’" can be avoided by
choosing the various parameters to give wB > o at the commencement of the diffusion

process.




During the main acceleration phase the significance of toroidal effects is

reduced because v/YO + 0o, When Be remains approximately congtant as shown in Fig.
10, or increases with time the accelerated beam moves closer to the center of the
minor cross-section of the torus. This may be seen from the beam equations, which

for B = com:t.,, are:
of

- . . -3 .8, <epp %0
ar + (v/y) & + w, Ar = (Qoe/Y) AZ+Tmro ’ (40)
6z + (YY) + 522& = - (a_ /Tt (41)

With the exception of the second term (v/v)ar, Eqs. (40) and (41) are identical to
[ ]

Eqs. (12) and (13). For n = 1/2, Eqs. (40) and (41) can be readily solved.

Introducing a new variable ¢ = Ar + 1Az, these two equations can be combined into a

single equation

Q <8p >
- 1 ,» 2 08 8
¢+Y(Y+iﬂoe) LA e Yar_® (42)
where w = Erz = GEZ. The general solution of Eq. (42) is
vt v + wp
t -
where -1 ] W (o)dt
a, e +
v, = 1 o T
1 Q .2
1/2 09 2
vOES) + ee]
t .
-1 f w (O)dt
a,e
2 0
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Figure 10. This figure illustrates a possible time dependence of the toroidal
and betatron fields. From the stability point of view other time

variations are more appropriate,
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and

- Qoe <6P6> W) de- (Qoe <6Pe>) o de-
? Y mnro 2 t Y Ymro 1
v o=y + v .
P 1 W (wl, Wb) 2 W (Wl, wz)

0)
+

50 JQoe 2 2
= + (E;-) + w © and w(wl, wz) is the Wronskian

In the above equatiomns 7y *

of the two independent solutions &1 and wz of the homogeneous equation.

Since the denominator of wl and wz increases, when the betatron field

increases in time, the center of the beam moves toward the center of the wminor

cross-section of the torus during the acceleration.
V. Grad B Drift in the Modified Betatron

Until now we have neglected in our analysis the radial gradient in the toroidal
magnetic field, BB' In this section we consider carefully the effect of this non- ‘
linearity on particle motion, assuming that it is the dominant non-linear effect.

The linearized equations of motion of a particle located at r = r, +
Ar + 8r, z = Az + & where Ar and Az are the beam position with respect to the

center of the torus (See Figure 11) are

2
P el -md 2 -nd 2 (srrtoan =8 -y o+3 o
1 Zo 1 z0 2 80 r % zo y mr *
a o o o ;
t
o = : (43) ':.
zl + nﬂzo zl o}

where
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Figure 11. System of coordinates used to analyze the drift resulting from the

gradient in the toroidal magnetic field.
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z, = Az + 6z,

1

on = noz/Yo’

Qeo = Qoe/Yo°

Choosing n = %-simplifies the subsequent analysis. !Making this choice and

defining ¢ = r + iz gives

2
r
- 1l ~ 2 ~ 2 b
wl + 2 “zo ‘4*1 nsto (6y + a2 89)
~ Rewl . - SPe
=-ia .0 —=) v+ e Y or (44)
o o o

We proceed to solve (44) perturbatively, assuming Rew1 <K r,e

The zero order equation, neglecting the non linearity, is easily solved. First
an average is performed over initial positions and velocities of the particles to
obtain a single equation governing the motion of the beam center, A¢y. Denoting this
average by brackets we will have <6y> = 0 by definition and, it may be shown that as
long as no kinks develop in the beam <6@> =0 = <6$>. Once the averaged equation is

obtained it may be subtracted from (44) to obtain an equation for &¢. Carrying out
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this program, we find for the zero order solution:

<& -iw t iw.t
Aw(O) = 6> 3 + Ae ! + Be 2 ’
r
~ 1 b
on 16 0 (2 a2 ng)
(45)
&, ~ <8 -iw.t -iw,t
W(O)‘ 8 3 + ce 3+De 4,

~ 1
on Yomro (2 ns)

where A, B, C, and D are arbitrary complex constants and where the frequencies

w eee W, are given by

We shall take subscripts 1 and 3 to correspond to the + signs,

r2
In writing (45) we have assumed that neither (%-- _EE ns) nor

a
(%-- ns) is zero. 1If either of these quantities does vanish (corresponding
physically to the vanishing of net radial restoring forces) the corresponding
solutions to (44) grow secularly, indicating a curvature or centrifugal drift in the
vertical direction. Below we assume that the radial restoring forces do not vanish
for either beam or particle motion, In addition we shall make the assumption
that <6Pe> = 0, This is the same as the requirement that the equilibrium position
of the beam be at the center of the minor cross section of the torus, This
asgumption has no effect whatsoever on the basic physical results and conclusions

but does simplify the mathematics somewhat.
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We may return to (44) and calculate the first order correction to the beam !

position, Aw(l). The equation to be solved is

2

“(1) . .5 A1) 5 21 b (1) _
AY + 1Qe°AW + on (2 az ns) AY
}
- 47) f
_ 8% (0) 72 (o)
1 —= <[Rew "7 [y, 0>,
o
Substituting from (45) we find the right hand side of (47) is
2 2 -i(w.t - a,)
(0) 42 (0) . j h|
<[Rew W ">=-1i ¥ ] w p ne cos(ut - a)
1 1 1 kel i %1 & % % |
48 '
. 4 ) (48)
-5 I wllp >,
ju3 33
where we have defined
iaj
A, B, C,DEpje ; i=1, 2) 3) l;’

and where we have assumed that

<C> =<p> = 0,

From (47) and (48) we can see that apart from oscillating terms the net effect
of the radial gradient {in By is to cause an outward shift in the equilibrium

position of the beam:

~

Q 4
2) < T w0
(1) _ 2% qmp 33
Awl = 5 + oscillating terms. (49)

r
n 2 ( b

1
zo z';z—-ns>
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This result is simply understood as the result of a balance between the outward,
"diamagnetic" force (which tends to expel the beam from the high field region) and

the imward radial restoring force.

Since the p, values in (49) depend on the details of the injection process, it

3

is difficult to draw practical, quantitative conclusions from this result. However

it is probably safe to conclude quite generally that any device should be designed

1 tzb
so that 5= >> — n_ for all times, or
2 a2 s

1 ~ 2
v/Yo <<‘Z (Yonoa/c) , (50)

for the case of a perfectly conducting wall. The Y, should be omitted in the
parentheses on the right hand side of (50) in the case of a poorly conducting wall
(diffusion time short compared to a beam oscillation period). We note that the
constraint in (50) is independent of the strength of the toroidal magnetic field.

Two dimensional computer simulations bear out our claim that self consistent
beam equilibria exist in the presence of a gradient in Be, as long as the net radial
focusing forces (proportional, basically, to the denominator in (49) but generalized
to include the case n #-%, and to include toroidal corrections to the self fields)
do not vanigh. In Figure 12 we show a succession of 'snapshots" of a beam cross
section, which remains in its equilibrium position for significant times compared to
rb/VD, where VD is the single particle drift velocity,

2
VD Qeo o] /2:’0,

and where p is a particle gyradius. No drift is observed. (This is nu: just a
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Figure 12. Four snap-shots of the electron ring minor cross-—section. The
values of the various parameters used in this computer simulation

run are shown at the top of the figure.




visual observation but is obtained from a plot of average particle position vs.

time.)
In Figure 13, on the other hand, we present a case in which net radial focusing
does nearly vanish. Loss of confinement is extremely rapid under such conditions.

The ring drifts vertically with an average speed of 0.25 cm/nsec.

VI. The Effect of Emittance

Up to this point, we have dealt with the equations describing the motion of the
center of an electron ring in a modified betatron configuration. 1In this section,
we discuss the effect of the finite emittance on the equilibrium of the gyrating

electron ring using the beam envelope equation. When the major beam radius T, is

2
surrounding walls is neglected, the beam envelope equation in the paraxial
13

large, n = L s Yo = constant,'$ << 1, the energy mismatch GYB = 0 and the effect of

approximation for Boe >>-BOz becomes™~ in the Larmor frame of reference,

3
2 29/ y 2
) () =~ 2 - —E g, (s1)
oz ° 8 2r (s) r.3(s)

o b t

Boe
2B

- 1
ry (s) +—3 (
r
o

where € is the beam emittance (unnormalized), s = ero is the length along the minor
axis of the torus and Ty (s) = drb/ds. For a zero emittance beam the motion of the

particles is laminar and the equilibrium is called either laminar flow or Brillouin
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Figure 13, Reducing the betatron field by 10 G, but keeping the remaining
parameters fixed, as in the run of Figure 12, the electron ring

drifts rapidly in the vertical direction.
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flow. The equilibrium radius in this case ig obtained from Eq. (51) by setting

-

rb = =
‘|1
t
and is
1
L~ 2c 2v,2
4 = = (=—)", (52)
b,eq Q09 Yo
when yo >> 1. For a finite emittance beam, the equilibrium radius can be determined
from Eq. (51) by taking ry (s) = 0 and is i
11
QLY 2575 ‘
2c v v 2 2, 008'0v7192,2 !
Ty g "5 It [T+ S () 1 (53) i
b,eq Qoe Y5 \A 2¢c .
= + .
For small envelope oscillations £y rb’eq 8§, with d/rb,eq << 1 and Eq. (51) gives

~»

2, 02, 4
§ + 2[(Qoe/2Y°c) + € /‘b,eq]5 =0,

that has a period
2n/c (54)

2 2, 4R
‘2[(909/210c) + 3¢ /rb’eq]

T =

The effect of emittance on the equilibrium of the ring has been studied
extensively using a computer simulation code. Numerical results from the computer
simulation are given in Figs. 14 to 17. For a beam with Yo = 7, I = 10 XA,

r," 100 cm, Boz = 160G, Bog™ 14156, Eq. (52) predicts that the equilibrium radius

for the Brilluin flow is 1 cm. The numerical results of Fig. 14 give also a radius

of 1 cm, that for all practical purposes remains constant in time. In this run the
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Figure l4. Root-mean distance of the electrons from the center of the ring as

a function of time, when the emittance, e, is zero.
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Figure 15. Root-mean distance of the electron from the center of the ring as

a function of time. 1In this run € = 50 mrad-cm.
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Figure 16. Four snap-shots of the electron ring minor cross-section when € =

50 mrad-cm.
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Figure 17. Root-mean distance of the elctrons from the center of the ring.

The envelope oscillations are drastically reduced when the
toroidal magnetic field is increased from 1415 G to 1830 G.
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electron beam is injected into the torus with a rotational frequency that is half of
the local cyclotron frequency. Figure 15 shows the envelope in time of a nor~-
rotating beam. The various parameters in this run have the same values as those in
Fig. 14, except now the emittance is non-zero in the Larmor frame. For the

equivalent emittance of € = 50 mrad-cm, Eq. (53) gives an r = 1,21 cm and the

b,eq
numerical results 1.24 cm. Similarly, Eq. (54) gives period of 2.13 nsec and the

numerical results 2.28 usec. Snap shots of the beam cross-section from the same run
are given in Fig. l4. The oscillations observed in the run of Fig. 15 can be

avoided by "matching" the beam, i.e., by raising the B o magnetic field to 1830G.

8

This value of magnetic field gives an 29 eq = | c¢m, which is the radius of the beam
]
for Brillouin flow. Numerical results from this run are shown in Fig. 17.
The electron beams discussed so far in this section were monoenergetic with

finite emittance. Such beams have an axial velocity spread equivalent to that of a

cold beam with energy spread Ay that is given by15

Ay _ 1.Y8e2
Y rbe) ¢

[ ¥ ’L.-

Actual or equivalent energy speed in the direction of beam propagation has an
important effect on the dynamics of electrons as may be seen as follows. The
equations describing the motion of individual electrons in cylindrical geometry are
identical with those describing the motion of the center of the beam, provided that

-~

wrz and 522 are replaced by

Q
52 = (2221 -n-1n),
Yo s

Q
~2 02,2
w, (Yo) (n ns),
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and

<W8-c2 By
Y™ ronoz Yo

The above set of equations are based on the assumption that toroidal effects can be
neglected. In addition, it should be emphasized that Ay is thermal energy spread
and not the energy mismatch GYB discussed in Section III.

For n = %, the solution of the individual particle equations are

(1 - cosw_t) ‘
_B. (55) '

r-r = 6r cosut - & sinwt+r Ay
o o B o B oy 1
o =-n
2 s
Ay siant
Sz= Gzocosth + GrosinuBt -, T (56)
ox-n
2 s
where
Qoz Bz
w = ——==(1/2 - n ).
B Yo Be S
According to Eq. (55), when n <1, i.e., for low current beams, thermal effects I:

increase substantially the minor radius of the beam. In such beams the minor radius

varies as 2r AY/YO-

In contrast, when ng >> 1, i,e., for high current beams, thermal effects do not '

r
change significantly the minor radius of the beam, which varies as (;2) Al.

S YO

The effect of the axial energy spread on the minor cross-section of the beam in
a modified betatron geometry has been studied numerically. Results from both the

high and low current beams are given in Fig. 18. 1In these two runs the various

parameters have the values listed in Table III. In the high current beam case the

minor radius expands by approximately a factor of two. However, in the low current
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Figure 18. Snap-shots of the electron ring minor cross-section for low and
high current. The values of the various parameters for this run

are listed in Table II. The energy spread in both cases is 10%.
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Table III.
Parameters Low Current High Current
Beam Current (kA) 0.1 10
Beam Energy (MeV) 3 3
Energy Spread (%) 10 10
Major Radius (cm) 100 100
Beam Minor Radius (cm) 1 1
Initial Betatron Field (G) 116 146
Toroidal Field (kG) 1.4 1.4
External Field Index 0.5 0.35
Self Field Index (ns) 0.37 23.4
Torus Minor Radius (cm) 3.2 3.2
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beam run the beam expands significantly and strikes the wall. Therefore, a

substantial energy spread can be tolerated in high current beams without a
catastrophic expansion of the minor radius of the beam. Such energy spread may be

required to stabilize the various disruptive instabilities.l6-18

VII. Summary

In this paper we review the dynamics of ultra-high current electron rings in
the modified betatron configuration. Our discussion addresses mainly the evolution
of the electron ring after injection. The formation of the ring during injection
has been analyzed and reported previously.19

Our work includes both analytical and numerical results for "cold" and "hot"
rings. The counclusion of these studies is that equilibrium states of ultra-high
current rings in a modified betatron exist over a wide range of parameters. These
equilibria are realistic and accessible with state of the art injectors.

The results presented in this paper are based on several simplified
assumptions. Among them, we have assumed that the various fields are free of
errors, the conducting wall that surrounds the electron ring was assumed to be
smooth, 1.e., without ports and gaps and the external field index was assumed to be
constant in time and space. The consequences of these assumptions is presently

under investigation.
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Appendix A

s ¥ kS, P

Diffusion of the self magnetic field of the beam through a conducting

liner.

P e L

The purpose of this appendix 1s to briefly outline the calculation of the
diffusion of the self magnetic field of the beam through a conducting liner.

To simplify the analysis, it is assumed that the electron beam is located

along the axis of a straight, circular cylinder of inner radius a, outer
radius b and thickness § = b-a, as shown in Fig. 9. 1In addition, it is
assumed that the current of the electron beam is a step function that is
turned-on at t=0. Since the problem of interest is that of an electron ring
inside a torus, it is further assumed that the axial inductive electric field
goes to zero at r=r,, where o is the major radius of the torus.

Neglecting the displacement current (quasi-static approximation), the

fields inside the cylindrical conducting shell (a { r { b) are given in MKS

units by
v xH = 3, (A-1)
v.8=0, (A-2)

>
£ . _ 9B -
Y xE = 5c° (A-3)
and

J = of, (A-4)

3 : where 3 is the current density, ﬁ is the magnetic field, ﬁ is the magnetic
induction and o the conductivity of the conductor.
Assuming that all quantities are independent of z and ¢, Eqs. (A-1) to
(A-4) can be combined to give a diffusion equation for the azimuthal component

of the magnetic field
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L R R :))]-aufﬁ(r £) (A-5)
ar ' r Ir ¢ ' at e

For r < a and r > b, the conductivity {s equal to zero and Eq. (A-5S) becomes

L2 @]=0, (A-6)

with the only acceptable solutions

Hy (,8) = 5= @(t), 1, <r<a (a-7)
Hy (r,t) = Hy (b,t) b/r, £ 2 b (4-8) g

where @(t) is the step function, and r, is the beam radius.
To complete the specification of the problem we have to introduce

boundary conditions. From Eqs. (A-3) and (A-8), we get

oE 3H (b,t)
-——z = ——
ar M at T’

which after integrationm yields

aHd, (b,t)

r

o

E, (r,t) =

where we have assumed that Ez (r,t) is zero at r=rq.
Combining Eqs. (A-1), (A-4) and (A-9) at r=b,we obtain the first boundary

condition, namely

H
; 1 9 b
[-E T3 (t‘H¢)] r=b = | 33- (b,t) b &n ?0—. (A-10)
i
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The second boundary condition is furnished from the continuity of the magnetic

field at v = a, {.e.,

L

T e(t) = H¢(a.t) . (A-11)

Since the magnetic field is zero at t=0, Eqs. (A-5), (A-9) and (A-10) take the

following forms in their transformed state

P 3 i
1 -
3—2;?4'% 31—_2— (-—2'+ Uup) H¢ =0, (A-12)
r r
3 " - 2, b
-— (rﬂ )] = oupH (b,t) b Ln —, (A-13) L
[a: ¢ r=b ¢ o g
and t
i |
L .|a (r t)' (A-14)
2nap ¢ o J r=a ?

where, the Laplace transform of H¢ is defined by

Ry (r,p) = ({ T ePEy (r,0) de, Re (p) > T.

Equation (A-12) is the modified Bessel equation and its solution is
Ry (r,p) = AL () + K, (Ar),
where A and B are constants and Xz = Oup.

The two constant coefficients A and B are determined from Eqs. (A-13) and

(A-14) and are:




1 b

A= (___.ZMPA)[KO(M,) 4+ b fn ;;Kl(lb)] ,

B= (52— )[1,(3b) - b tn 2= 1 (ap)]
2napA’tT0 T 1 S

vhere
8= Ry(B) I, ()\a)+Io()\b)K1(Aa)+Xbln%)- [k, () 1, Oa)
- K, (Xb) Il(Ab)]. (A-15)

The magnetic field in the region a { r { b as a function of space and time can

be obtained by inverting the Laplace transform, i.e.,

I <:+i*l'd ePt b
RQ(:,Q = 5 fc_i_ pm {[Ko(xb) + b fn -r-axl(xb)] I,(xr)
+ [1,00b) = b tn 2—0 LOw] k() (A-16)

where the path of integration is a vertical line in the complex p-plane to the

right of all singularities of the integrand.

Equation (A-16) has a simple pole at p=0 of residue a/r and an infinite

set of simple poles at A4=0.

Contour integration of Eq. (A-16) gives

\
- 1-q2

/ on
Hy(r,t) = 5or |2+ 5_1 e 80 [Yo(asb)Jl(asr) R ACR N RS
+ ab ln-b—-[Y (ab)J . (ar) - Y. (ar)J (ab)ﬂ a(ﬂ) (A-17)
s rolsls 1" s’ "1 s sdaa-us .




0* A= jia, Y,J are the Bessel functions, @ are the roots of ‘

where u = p

equation

Yo(asb)Jl(asa) - Yl(qsa)Jo(asb) + asb n -:—0 [Yl(asb)Jl(usa)

- Yl(asa)Jl(csb)] =0, (A-18)
and
as(%%) = aa [Yo(asb)Jo(asa) - Yo(usa)Jo(asb) ]- asb[Yl(asb)Jl(asa) |
Q= :

- Y,(aa)J, ( a.sb) ]+ ab fn :—0- fv a [Yo ( asb)J 1 (e a) - Y, ( asa)Jo( a.b) ]

+aa [Jo(aga)Yl(agb) - Yo(uéa)Jl(asb)]}.

For a a >> 1, Eq. (A-17) is reduced to

2
» - a “t/ou
HQ(r,c) » .Z%a- { %a\}-:—_-ggl e 0 [cos as(b—r)

b . 2 b
+ asb £n -r-o sin as(b—r) ]/(astS sin (asa) -a b %n - cos o,sd)f, (A~19)
o

vhere as are now the roots of

b
cos (as6) + usb 2n ?; sin (usts) = 0. (A-20)

Equations (A-19) and (A-20) can be further simplified when ass‘ << 1. In this

case




1 ;a (841/2 b !
H¢(r,:) o Ty { i L;) [coc as(b-r) + a.b n ;; sin as(b-t)] t
2 av
*G. t/ouo i
e ’ i
14
?
which at r=b, becomes :
2
-a “t/ou
I 0
Hp(b,t) = 5= {1 - e ° b 1
where
2 1 ’
% Gblnto . (a-21)
v

1 - aszt/auo !
H¢(r,t) ol 1 -e }, £>b, MKS (a-22) ;
or
21 -a_ tc2/4nc
Hy(r,0) = 22 {1 -e . ces (A-23)

Under the same approximations, the electric field at the inner edge (r=a)

of the conducting shell is

I 2 0 [
E,(a,8) = - 5= a !.n(r) e , MKS (A-24)
T 2 -
-a_“te"/4no
1 2 To s
E (a,8) = - 5= a” i (F)e . CGS
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SR IV

Since the electric field is uniform in the region r { a, Eq. (A-24) gives also

the electric field that acts on the beam. Substituting Eq. (A~24) into the

energy rate equation

ac? L. 3. g,

AY w5 ¥ 9
Y 2 Y fn 5

o AY

A-25)

For B—°—- 10 and ¥ = 0.1, Eq. (A-25) gives 2 =0.46, i.e., a substantial

reduction in the energy of the beam. However, for highly relativistic beams

v,Z¢ and thus the current of the beam remains approximately constant.
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Appendix B

Description of the Particle in Cell Computer Code

The NRL modified betatron accelerator is designed for a maximum v/Yo = 0.1,
i.e., the current is high enough so that the self-fields of the ring can exceed the
externally applied fields. A realistic theoretical description must ctherefore self-
consistently include the beam’s self fields as well as the effect of surrounding
walls. Since this is difficult analytically, particularly if the ring is displaced
substantially from the center of the minor cross-section of the torus, numerical
simulations are useful both in gaining insight into the important physical processes
as well as to provide a method to check the applicability of specific assumptions in
an analytic model.

The dynamics of the accelerated electron ring are determined by forces that
vary on a number of different time scales which range from the electron cyclotron
period, i.e., a few nanoseconds to the beam acceleration time, which is of order a
millisecond. The code described here is taylored to simulate efficiently the
various phenomena on the intermediate time scale. This time scale is characteristic
of the drift (bounce) motion of the ring after equilibrium has been established,
rather than the rapid evolution occuring at injection. Simulation of a single turn
around the major axis that lasts about 20 nsec using 4K particles on a 64 x 64 grid
and typically takes about one minute on the NRL Texas Instruments ASC.

33 = 0, but with

?
three velocity components. Although Be is used in calculating the particle

The simulation code is r-z, spatially two dimensional, 1i.e.

trajectories, it is not solved self-consistently, f.e., {3 assumed to be generated
from external coils only. This assumption is valid to first order in v/y. The

radiative term (displacement current) is also ignored, i.e., the code uses the
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Darwin model for Maxwell’s equationms.

The electrostatic potential is computed from Poisson’s equation

o= of ., (B-1)

and the magnetic vector potential from

A
V2 9
3 A-—--UJ
G t2 o

o (8-2) i

with the boundary condition ¢ = Ag = 0 at the conducting wall,

Equations (B-1) and (B-2) are solved by Fourier decomposition in the z-
direction and then by Gaussian elimination of the resultant tridiagonal matrix of
equations obtained from a 3-point differencing scheme for Vrz. The inverse Fourier
transform yields Ae and ¢ on the grid. Note that the © particle velocities are
advanced using the conservation of cannonical momentum in the 6 direction, the
equation for Ae is therefore not properly time centered since the velocities from
the previous time step are used to calculate the currents from the cannonical ﬁ
momenta. This method was chosen primarily for its speed and simplicity but care

must be taken in applying the code when the inductive acceleration of particles in

the 0 direction is significant.

If boundary conditions other than Ae or & equal zero on a rectraqular grid are
desired, it is possible to obtain relatively arbitrary boundary conditions using the |
capacitive matrix(Buneman) technique. In this method a matrix is generated which is
the Green’s function for discrete 'wall" points within the system. Then at each
time step the field solver described above is used. The potential at the discrete
(wall) points is obtained. By multiplying this vector potential by the invense

matrix obtained previously a set of (wall) currents or changes is generated, which
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is used to specify the wall potential. These ''wall' sources are then added to the
original beam gsource and the field solver is used again. The result by the
principle of superposition is correct inside the system and has the correct boundary 1
condition on the '"wall",

Particle Push

The motion of the electrons is governed by the Lorentz force

d(vh >
- o E+Vx38),
0
where § and B are the total electric and magnetic field respectively.

In component form the equations used to update the velocities and positions at

each time step are

P

- —9__9
We = "ale (B-3)
Qo [
aw) Wy
&t " a (E g+ Vgx B~ V,x Bg) +— (B-4)
a(w ) 'i
—_— .4 -
dt m (Er Vg X Bz+ sz BB) (B-5)
dr
TR (B-6) |
dz
&~ Y, (B-7)

Equation (B-3) is used at each timestep to compute Y Vg- Equations (B-4) and (B-5)

are coupled, To advance these velocities a leap-frog scheme is employed. At time
t all fields, positions and Ve are known exactly. V. and V, however are known at

t+l and the velocities will be advanced to t+1/2. Before the equations are
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M=t 31 s A e

- st

differenced, it is convenient to rewrite the equations in terms of the relativistic

momenta. Letting

+> >
U= W

the equations (B-3), (B-4) and (B-5) can be written as

3
Pe q_ J
Ug"ar " %o (B-3a)
o] 0 . 1
i
au_ vy \
—d—t- - Ymo (YEr+ Ue){ BZ- sz Be) + ? (B_4a)
du
—Z . 9 -
Te ™ w0 (Y8 7 Ut By * Upx By) (B-5a)
U
dr r
it - v (B-6a)
dz _ % (B-7a)
dt Y

This formulation is then differenced by substituting i

d+1/2 - ¢t71/2 for 40
At dt }
and :
6t+1/2 + 6(:-1/2 . '

3 for U .

After making these substitutions in equations (B-4a) and (B-5a) it is straight-

t+1/2
UZ

forward, if somewhat tedious, to solve the two coupled equations for and

65




t+l/2
Ue

Since U_ and U, are calculated at the half-timesteps while Ue is known at
the full timesteps, Y 1is not known at time t., This difficulty is overcome using
iteration.

Af ter advancing the velocities the particle positions are advanced using a

simple centered difference

U
rt+l-tt+6'1‘.—§f-,

and

U
zt+l = zt + 6T. —% .

Once all the velocities and positions are found the new current and charge densities

are used to update the fields and a new time step begins.
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